You are here: Home Research Themes Pathogenesis


Article Reference Nontypeable Haemophilus influenzae inhibits autolysis and fratricide of Streptococcus pneumoniae in vitro.
Streptococcus pneumoniae (SP) and nontypeable Haemophilus influenzae (NTHi) are common commensals of the human airway and major bacterial pathogens of otitis media (OM) and other upper airway infections. The interaction between them may play an important role in the pathogenesis of polymicrobial infections. Although previous studies suggested NTHi could promote pneumococcal survival and biofilm formation, how NTHi affects pneumococcal activities has not been defined. Our data in the present studies indicated that the outcome of the interaction between SP and NTHi was in a cell-density-dependent manner and the enhancement of pneumococcal survival happened at the later stages of culturing. Using quantitative PCR, we found that the expression of pneumococcal genes regulating autolysis and fratricide, lytA and cbpD, were significantly down-regulated in co-culture with NTHi. We further observed that influence of NTHi was not on direct cell-to-cell contact, but that this contact may contribute to the interaction between these two microorganisms. These results suggest that pneumococcal survival and biofilm formation can be enhanced by down-regulating pneumococcal cell wall hydrolase production thereby inhibiting pneumococcal autolysis and fratricide in the presence of NTHi.
Article Reference Incorporation of phosphorylcholine into the lipooligosaccharide of non-typeable Haemophilus influenzae does not correlate with the level of biofilm formation in vitro.
Non-typeable Haemophilus influenzae (NTHi) is an opportunistic pathogen causing otitis media in children and community acquired pneumonia or exacerbations of chronic obstructive pulmonary disease in adults. A large variety of studies suggest that biofilm formation by NTHi may be an important step in the pathogenesis of this bacterium.The objective of this report was to determine the relationship between presence of phosphorylcholine in the lipooligosaccharide of NTHi and the level of biofilm formation. The study was performed on 111 NTHi clinical isolates collected from oropharyngeal samples of healthy children, middle ear fluid of children with otitis media and sputum samples of patients with chronic obstructive pulmonary disease or community acquired pneumonia.NTHi clinical isolates presented a large variation in level of biofilm formation and phosphorylcholine content. Isolates collected from the oropharynx and middle ear fluid of children tended to have more phosphorylcholine and made denser biofilms compared to isolates collected from sputum of patients with chronic obstructive pulmonary disease or community acquired pneumonia. Contrary to previous literature, no correlation was observed between biofilm formation and presence of phosphorylcholine in the lipooligosaccharide, either in planktonic or biofilm growth. This lack of correlation was confirmed by abrogating phosphorylcholine incorporation into lipooligosaccharide through licA gene deletion, which had strain-specific effects on biofilm formation.Altogether, we present strong evidence to conclude that there is no correlation between biofilm formation and presence of phosphorylcholine in lipooligosaccharide in a large collection of clinical NTHi isolates collected from different groups of patients.
Article Reference Comparative genomic analysis reveals distinct genotypic features of the emerging pathogen Haemophilus influenzae type f.
The incidence of invasive disease caused by encapsulated Haemophilus influenzae type f (Hif) has increased in the post-H. influenzae type b (Hib) vaccine era. We previously annotated the first complete Hif genome from a clinical isolate (KR494) that caused septic shock and necrotizing myositis. Here, the full genome of Hif KR494 was compared to sequenced reference strains Hib 10810, capsule type d (Hid) Rd Kw20, and finally nontypeable H. influenzae 3655. The goal was to identify possible genomic characteristics that may shed light upon the pathogenesis of Hif.
Article Reference Prevalence, distribution, and sequence diversity of hmwA among commensal and otitis media non-typeable Haemophilus influenzae.
Nontypeable Haemophilus influenzae (NTHi) are Gram-negative coccobacilli that colonize the human pharynx, their only known natural reservoir. Adherence to the host epithelium facilitates NTHi colonization and marks one of the first steps in NTHi pathogenesis. Epithelial cell attachment is mediated, in part, by a pair of high molecular weight (HMW) adhesins that are highly immunogenic, antigenically diverse, and display a wide range of amino acid diversity both within and between isolates. In this study, the prevalence of hmwA, which encodes the HMW adhesin, was determined for a collection of 170 NTHi isolates recovered from the middle ears of children with otitis media (OM isolates) or throats or nasopharynges of healthy children (commensal isolates) from Finland, Israel, and the U.S. Overall, hmwA was detected in 61% of NTHi isolates and was significantly more prevalent (P=0.004) among OM isolates than among commensal isolates; the prevalence ratio comparing hmwA prevalence among ear isolates with that of commensal isolates was 1.47 (95% CI (1.12, 1.92)). Ninety-five percent (98/103) of the hmwA-positive NTHi isolates possessed two hmw loci. To advance our understanding of hmwA binding sequence diversity, we determined the DNA sequence of the hmwA binding region of 33 isolates from this collection. The average amino acid identity across all hmwA sequences was 62%. Phylogenetic analyses of the hmwA binding revealed four distinct sequence clusters, and the majority of hmwA sequences (83%) belonged to one of two dominant sequence clusters. hmwA sequences did not cluster by chromosomal location, geographic region, or disease status.
Article Reference Combined exposure to cigarette smoke and nontypeable Haemophilus influenzae drives development of a COPD phenotype in mice.
Cigarette smoke (CS) is the major etiologic factor of chronic obstructive pulmonary disease (COPD). CS-exposed mice develop emphysema and mild pulmonary inflammation but no airway obstruction, which is also a prominent feature of COPD. Therefore, CS may interact with other factors, particularly respiratory infections, in the pathogenesis of airway remodeling in COPD.
Article Reference Ferric uptake regulator and its role in the pathogenesis of nontypeable Haemophilus influenzae.
Nontypeable Haemophilus influenzae (NTHi) is a commensal microorganism of the human nasopharynx, and yet is also an opportunistic pathogen of the upper and lower respiratory tracts. Host microenvironments influence gene expression patterns, likely critical for NTHi persistence. The host sequesters iron as a mechanism to control microbial growth, and yet iron limitation influences gene expression and subsequent production of proteins involved in iron homeostasis. Careful regulation of iron uptake, via the ferric uptake regulator Fur, is essential in multiple bacteria, including NTHi. We hypothesized therefore that Fur contributes to iron homeostasis in NTHi, is critical for bacterial persistence, and likely regulates expression of virulence factors. Toward this end, fur was deleted in the prototypic NTHi clinical isolate, 86-028NP, and we assessed gene expression regulated by Fur. As expected, expression of the majority of genes that encode proteins with predicted roles in iron utilization was repressed by Fur. However, 14 Fur-regulated genes encode proteins with no known function, and yet may contribute to iron utilization or other biological functions. In a mammalian model of human otitis media, we determined that Fur was critical for bacterial persistence, indicating an important role for Fur-mediated iron homeostasis in disease progression. These data provide a profile of genes regulated by Fur in NTHi and likely identify additional regulatory pathways involved in iron utilization. Identification of such pathways will increase our understanding of how this pathogen can persist within host microenvironments, as a common commensal and, importantly, as a pathogen with significant clinical impact.
Article Reference The role of microbes in the pathogenesis of acute rhinosinusitis in young adults.
To provide information on the course of acute rhinosinusitis (ARS) with sequential nasal and paranasal microbiological data and their correlation with clinical outcomes.
Article Reference Diversion of the host humoral response: a novel virulence mechanism of Haemophilus influenzae mediated via outer membrane vesicles.
The respiratory tract pathogen Haemophilus influenzae frequently causes infections in humans. In parallel with all Gram-negative bacteria, H. influenzae has the capacity to release OMV. The production of these nanoparticles is an intriguing and partly unexplored phenomenon in pathogenesis. Here, we investigated how purified human peripheral blood B lymphocytes respond to OMV derived from unencapsulated, i.e., NTHi and the nonpathogenic Haemophilus parainfluenzae. We found that H. influenzae OMV directly interacted with the IgD BCR, as revealed by anti-IgD pAb and flow cytometry. Importantly, H. influenzae OMV-induced cellular activation via IgD BCR cross-linking and TLR9 resulted in a significant proliferative response. OMV isolated from the related species H. parainfluenzae did not, however, interact with B cells excluding that the effect by H. influenzae OMV was linked to common membrane components, such as the LOS. We also observed an up-regulation of the cell surface molecules CD69 and CD86, and an increased IgM and IgG secretion by B cells incubated with H. influenzae OMV. The Igs produced did not recognize H. influenzae, suggesting a polyclonal B cell activation. Interestingly, the density of the cell surface receptor TACI was increased in the presence of OMV that sensitized further the B cells to BAFF, resulting in an enhanced IgG class-switch. In conclusion, the ability of NTHi OMV to activate B cells in a T cell-independent manner may divert the adaptive humoral immune response that consequently promotes bacterial survival within the human host.